

Forces and Newton's Second Law

Force

- Force is an action that can change motion.
 - A force is what we call a push or a pull, or any action that has the ability to change an object's motion.
 - Forces can be used to increase speed, decrease speed, or change the objects direction.

Types of Forces

Contact forces: interactions between objects that touch

applied force

frictional force

normal force

Non-contact forces: attract or repel, even from a distance

A force is a push, pull or twist

Applying a force can change an object's velocity.

Mass vs Weight

Mass is a how much matter an object contains.

Mass is a constant for a body and does not change with location.

The kilogram is a unit of mass.

Weight 50 kg 110 lb 490 N

Mass

50 kg 110 lb

Technically, the pound is a unit of weight but not mass!

Weight is the force exerted on a mass by gravity.

Weight is not a constant. It changes from place to place.

The Newton is a unit of weight.

Weight 8 kg 18 lb

82 N

sciencenotes.org

What is acceleration?

Acceleration is a change in velocity.

Applying a force can change an object's velocity.

Newton's Second Law of Motion

An object's acceleration depends on:

- the strength of the unbalanced force acting on it
- the mass of the object

acceleration $\rightarrow a = \frac{F}{m} \leftarrow force$

More commonly written as: $\mathbf{F} = m_{a}$

Newton's Second Law F=ma

Pull on each wagon as hard as you can, applying the same force...

Example 1: What resultant force F is required to give a 6 kg block an acceleration of 2 m/s²?

$$a = 2 \text{ m/s}^2$$

Remember consistent units for force, mass, and acceleration in all problems.

Example 2: A 40N resultant force causes a block to accelerate at 5 m/s². What is the mass?

Example 3

do the math!

A car has a mass of 1000 kg. What is the acceleration produced by a force of 2000 N?

F=ma Demonstration

Object	Mass (grams)	Distance (cm)
Baseball		
Ping Pong Ball		
Soft Ball		
Basketball		
Racquetball		
Golf Ball		